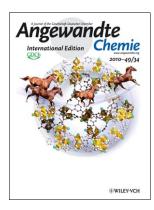


## The controlled reducibility ...


... of coordinatively unsaturated iron sites in MIL-100(Fe),  $[Fe_3O(H_2O)_2F_{0.81}(OH)_{0.19}-\{C_6H_3(CO_2)_3\}_2]\cdot 14.5\,H_2O$ , is described by J.-S. Chang and co-workers in their Communication on page 5949 ff. Thermal activation of MIL-100(Fe) generates coordinatively unsaturated sites with mixed-valence  $Fe^{II}/Fe^{III}$ , leading to preferential sorption selectivity towards unsaturated gas molecules such as propylene.



## **Inside Cover**

Ji Woong Yoon, You-Kyong Seo, Young Kyu Hwang, Jong-San Chang,\* Hervé Leclerc, Stefan Wuttke, Philippe Bazin, Alexandre Vimont, Marco Daturi, Emily Bloch, Philip L. Llewellyn, Christian Serre,\* Patricia Horcajada, Jean-Marc Grenèche, Alirio E. Rodrigues, and Gérard Férey

The controlled reducibility of coordinatively unsaturated iron sites in MIL-100(Fe),  $[Fe_3O(H_2O)_2F_{0.81}(OH)_{0.19}\{C_6H_3(CO_2)_3\}_2]\cdot 14.5\,H_2O$ , is described by J.-S. Chang and coworkers in their Communication on page 5949 ff. Thermal activation of MIL-100(Fe) generates coordinatively unsaturated sites with mixed-valence  $Fe^{II}/Fe^{III}$ , leading to preferential sorption selectivity towards unsaturated gas molecules such as propylene.

